Driven To Discover

nanoporous materials genome center

predictive hierarchical modeling of chemical separations and transformations in functional nanoporous materials: synergy of electronic structure theory, molecular simulation, machine learning, and experiment


JCED Cover
Collaborative CoRE MOF Development Featured

February, 2021 | Collaborative work leading to the development of the Computation Ready Experimental Metal–Organic Framework (CoRE MOF) database supported through the DOE Nanoporous Materials Genome Center is featured on the February 2021 cover of the Journal of Chemical & Engineering Data.

Laura Gagliardi
Laura Gagliardi named Associate Editor of JACS

November 17, 2020 | Beginning January 2021, Laura Gagliardi will serve as Associate Editor of the Journal of the American Chemical Society (JACS).

Dylan Anstine
Dylan Anstine receives AIChE award

November 17, 2020 | Dylan Anstine (Colina Group, University of Florida) has received an award for Excellence in Graduate Student Research (Area 08A) from the American Institute of Chemical Engineers (AIChE).

research highlights

Inverse design of nanoporous crystalline reticular materials with deep generative models

NMGC researchers Alán Aspuru-Guzik (University of Toronto), Omar K. Farha, and Randall Snurr (both of Northwestern University) propose an automated nanoporous materials discovery platform powered by a supramolecular variational autoencoder for the generative design of reticular materials.

Negative cooperativity upon hydrogen bond-stabilized O2 adsorption in a redox-active metal–organic framework

MOFs can mimic biological systems in the way they interact with molecular oxygen. Drawing inspiration from biological O2 carriers, hydroxo species have been introduced in the Co(OH)2(BBTA) MOF to stabilize cobalt(III)-superoxo species by hydrogen bonding. Additionally, O2-binding weakens in this material as a function of loading, a property called negative cooperativity. This property is typical of enzymes, but it had never been observed in extended framework materials before this study. This unprecedented behavior extends the tunable properties that can be used to design metal–organic frameworks for adsorption-based applications.

Revised M11 Exchange-Correlation Functional for Electronic Excitation Energies and Ground-State Properties

The revM11 functional is an improved version of the range-separated parameterization originally used in the M11 functional to obtain a parametrization.


Department of Energy Logo

This research is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Award DE-FG02-17ER16362 (Predictive Hierarchical Modeling of Chemical Separations and Transformations in Functional Nanoporous Materials: Synergy of Electronic Structure Theory, Molecular Simulations, Machine Learning, and Experiment) and was previously supported by DE-FG02-12ER16362 (Nanoporous Materials Genome: Methods and Software to Optimize Gas Storage, Separations, and Catalysis).

©2020 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement